7–1C
What is the difference between the upstream velocity and the
free-stream velocity? For what types of flow are these two velocities
equal to each other
Get solution
7–2C What is the difference between streamlined and blunt bodies? Is a tennis ball a streamlined or blunt body
Get solution
7–3C What is drag? What causes it? Why do we usually try to minimize it
Get solution
7–4C What is lift? What causes it? Does wall shear contribute to the lift
Get solution
7–5C
During flow over a given body, the drag force, the upstream velocity,
and the fluid density are measured. Explain how you would detennine the
drag coefficient. What area would you use in calculations
Get solution
7–6C
Define frontal area of a body subjected to external flow. When is it
appropriate to use the frontal area in drag and lift calculations
Get solution
7–7C
What is the difference between skin friction drag and pressure drag?
Which is usually more significant for slender bodies such as airfoils
Get solution
7–8C What is the effect of surface roughness on the friction drag coefficient in laminar and turbulent flows
Get solution
7–9C
What is the effect of streamlining on (a) friction drag and (b)
pressure drag? Does the total drag acting on a body necessarily decrease
as a result of streamlining? Explain.
Get solution
7–10C What is flow separation? What causes it? What is the effect of flow separation on the drag coefficient?
Get solution
7–11C
What does the friction coefficient represent in flow over a flat plate?
How is it related to the drag force acting on the plate
Get solution
7–12C
Consider laminar flow over a flat plate. Will the friction coefficient
change with distance from the leading edge? How about the heat transfer
coefficient
Get solution
7–13C How are the average friction and heat transfer coefficients determined in flow over a flat plate
Get solution
7–14
Engine oil at 80°C flows over a 6-m-long flat plate whose temperature
is 30°C with a velocity of 3 m/s. Determine the total drag force and the
rate of heat transfer over the entire plate per unit width
Get solution
7–15
The local atmospheric pressure in Denver, Colorado (elevation 1610 m),
is 83.4 kPa. Air at this pressure and at 30°C flows with a velocity of 6
m/s over a 2.5-m 8-m flat plate whose temperature is 120°C. Determine
the rate of heat transfer from the plate if the air flows parallel to
the (a) 8-m-long side and (b) the 2.5-m side
Get solution
7–16
During a cold winter day, wind at 55 km/h is blowing parallel to a
4-m-high and 10-m-long wall of a house. If the air outside is at 5°C and
the surface temperature of the wall is 12°C, determine the rate of heat
loss from that wall by convection. What would your answer be if the
wind velocity was doubled?
Get solution
7–17
Reconsider Problem 7–16. Using EES (or other) software, investigate the
effects of wind velocity and outside air temperature on the rate of
heat loss from the wall by convection. Let the wind velocity vary from
10 km/h to 80 km/h and the outside air temperature from 0ºC to 10ºC.
Plot the rate of heat loss as a function of the wind velocity and of the
outside temperature, and discuss the results
Get solution
7–18E
Air at 60°F flows over a 10-ft-long flat plate at 7 ft/s. Determine the
local friction and heat transfer coefficients at intervals of 1 ft, and
plot the results against the distance from the leading edge
Get solution
7–19E
Reconsider Problem 7–18. Using EES (or other) software, evaluate the
local friction and heat transfer coefficients along the plate at
intervals of 0.1 ft, and plot them against the distance from the leading
edge
Get solution
7–20
Consider a hot automotive engine, which can be approximated as a
0.5-m-high, 0.40-m-wide, and 0.8-m-long rectangular block. The bottom
surface of the block is at a temperature of 80°C and has an emissivity
of 0.95. The ambient air is at 20°C, and the road surface is at 25°C.
Determine the rate of heat transfer from the bottom surface of the
engine block by convection and radiation as the car travels at a
velocity of 80 km/h. Assume the flow to be turbulent over the entire
surface because of the constant agitation of the engine block
Get solution
7–21
The forming section of a plastics plant puts out a continuous sheet of
plastic that is 1.2 m wide and 2 mm thick at a rate of 15 m/min. The
temperature of the plastic sheet is 90°C when it is exposed to the
surrounding air, and the sheet is subjected to air flow at 30°C at a
velocity of 3 m/s on both sides along its surfaces normal to the
direction of motion of the sheet. The width of the air cooling section
is such that a fixed point on the plastic sheet passes through that
section in 2 s. Determine the rate of heat transfer from the plastic
sheet to the air.
Get solution
7–22
The top surface of the passenger car of a train moving at a velocity of
70 km/h is 2.8 m wide and 8 m long. The top surface is absorbing solar
radiation at a rate of 200 W/m2, and the temperature of the ambient air
is 30°C. Assuming the roof of the car to be perfectly insulated and the
radiation heat exchange with the surroundings to be small relative to
convection, determine the equilibrium temperature of the top surface of
the car.
Get solution
7–23
Reconsider Problem 7–22. Using EES (or other) software, investigate the
effects of the train velocity and the rate of absorption of solar
radiation on the equilibrium temperature of the top surface of the car.
Let the train velocity vary from 10 km/h to 120 km/h and the rate of
solar absorption from 100 W/m2 to 500 W/m2. Plot the equilibrium
temperature as functions of train velocity and solar radiation
absorption rate, and discuss the results
Get solution
7–24
A 15-cm 15-cm circuit board dissipating 15 W of power uniformly is
cooled by air, which approaches the circuit board at 20°C with a
velocity of 5 m/s. Disregarding any heat transfer from the back surface
of the board, determine the surface temperature of the electronic
components (a) at the leading edge and (b) at the end of the board.
Assume the flow to be turbulent since the electronic components are
expected to act as turbulators
Get solution
7–25
Consider laminar flow of a fluid over a flat plate maintained at a
constant temperature. Now the free-stream velocity of the fluid is
doubled. Determine the change in the drag force on the plate and rate of
heat transfer between the fluid and the plate. Assume the flow to
remain laminar
Get solution
7–26E
Consider a refrigeration truck traveling at 55 mph at a location where
the air temperature is 80°F. The refrigerated compartment of the truck
can be considered to be a 9-ft-wide, 8-ft-high, and 20-ft-long
rectangular box. The refrigeration system of the truck can provide 3
tons of refrigeration (i.e., it can remove heat at a rate of 600
Btu/min). The outer surface of the truck is coated with a low-emissivity
material, and thus radiation heat transfer is very small. Determine the
average temperature of the outer surface of the refrigeration
compartment of the truck if the refrigeration system is observed to be
operating at half the capacity. Assume the air flow over the entire
outer surface to be turbulent and the heat transfer coefficient at the
front and rear surfaces to be equal to that on side surfaces
Get solution
7–27
Solar radiation is incident on the glass cover of a solar collector at a
rate of 700 W/m2. The glass transmits 88 percent of the incident
radiation and has an emissivity of 0.90. The entire hot water needs of a
family in summer can be met by two collectors 1.2 m high and 1 m wide.
The two collectors are attached to each other on one side so that they
appear like a single collector 1.2 m 2 m in size. The temperature of
the glass cover is measured to be 35°C on a day when the surrounding air
temperature is 25°C and the wind is blowing at 30 km/h. The effective
sky temperature for radiation exchange between the glass cover and the
open sky is -40°C. Water enters the tubes attached to the absorber plate
at a rate of 1 kg/min. Assuming the back surface of the absorber plate
to be heavily insulated and the only heat loss to occur through the
glass cover, determine (a) the total rate of heat loss from the
collector, (b) the collector efficiency, which is the ratio of the
amount of heat transferred to the water to the solar energy incident on
the collector, and (c) the temperature rise of water as it flows through
the collector.
Get solution
7–28
A transformer that is 10 cm long, 6.2 cm wide, and 5 cm high is to be
cooled by attaching a 10 cm 6.2 cm wide polished aluminum heat sink
(emissivity 0.03) to its top surface. The heat sink has seven fins,
which are 5 mm high, 2 mm thick, and 10 cm long. A fan blows air at 25°C
parallel to the passages between the fins. The heat sink is to
dissipate 20 Wof heat and the base temperature of the heat sink is not
to exceed 60°C. Assuming the fins and the base plate to be nearly
isothermal and the radiation heat transfer to be negligible, determine
the minimum free-stream velocity the fan needs to supply to avoid
overheating.
Get solution
7–29
Repeat Problem 7–28 assuming the heat sink to be black-anodized and
thus to have an effective emissivity of 0.90. Note that in radiation
calculations the base area (10 cm 6.2 cm) is to be used, not the total
surface area
Get solution
7–30
An array of power transistors, dissipating 6 Wof power each, are to be
cooled by mounting them on a 25-cm x 25-cm square aluminum plate and
blowing air at 35°C over the plate with a fan at a velocity of 4 m/s.
The average temperature of the plate is not to exceed 65°C. Assuming the
heat transfer from the back side of the plate to be negligible and
disregarding radiation, determine the number of transistors that can be
placed on this plate.
Get solution
7–31 Repeat Problem 7–30 for a location at an elevation of 1610 m where the atmospheric pressure is 83.4 kPa.
Get solution
7–32
Air at 25°C and 1 atm is flowing over a long flat plate with a velocity
of 8 m/s. Determine the distance from the leading edge of the plate
where theflow becomes turbulent, and the thickness of the boundary layer
at that location
Get solution
7–33 Repeat Problem 7–32 for water
Get solution
7–34
The weight of a thin flat plate 50 cm 50 cm in size is balanced by a
counterweight that has a mass of 2 kg, as shown in the figure. Now a fan
is turned on, and air at 1 atm and 25°C flows downward over both
surfaces of the plate with a freestream velocity of 10 m/s. Determine
the mass of the counterweight that needs to be added in order to balance
the plate in this case.
Get solution
7–35C
Consider laminar flow of air across a hot circular cylinder. At what
point on the cylinder will the heat transfer be highest? What would your
answer be if the flow were turbulent
Get solution
7–36C
In flow over cylinders, why does the drag coefficient suddenly drop
when the flow becomes turbulent? Isn’t turbulence supposed to increase
the drag coefficient instead of decreasing it
Get solution
7–37C In flow over blunt bodies such as a cylinder, how does the pressure drag differ from the friction drag
Get solution
7–38C Why is flow separation in flow over cylinders delayed in turbulent flow
Get solution
7–39
A long 8-cm-diameter steam pipe whose external surface temperature is
90°C passes through some open area that is not protected against the
winds. Determine the rate of heat loss from the pipe per unit of its
length when the airis at 1 atm pressure and 7°C and the wind is blowing
across the pipe at a velocity of 50 km/h
Get solution
7–40
Astainless steel ball (p=8055 kg/m3, Cp 480 J/kg · °C) of diameter D
15 cm is removed from the oven at a uniform temperature of 350°C. The
ball is then subjected to the flow of air at 1 atm pressure and 30°C
with a velocity of 6 m/s. The surface temperature of the ball eventually
drops to 250°C. Determine the average convection heat transfer
coefficient during this cooling process and estimate how long this
process has taken
Get solution
7–41
Reconsider Problem 7–40. Using EES (or other) software, investigate the
effect of air velocity on the average convection heat transfer
coefficient and the cooling time. Let the air velocity vary from 1 m/s
to 10 m/s. Plot the heat transfer coefficient and the cooling time as a
function of air velocity, and discuss the results
Get solution
7–42E
Aperson extends his uncovered arms into the windy air outside at 54°F
and 20 mph in order to feel nature closely. Initially, the skin
temperature of the arm is 86°F. Treating the arm as a 2-ft-long and
3-in.-diameter cylinder, determine the rate of heat loss from the arm.
Get solution
7–43E
Reconsider Problem 7–42E. Using EES (or other) software, investigate
the effects of air temperature and wind velocity on the rate of heat
loss from the arm. Let the air temperature vary from 20°F to 80°F and
the wind velocity from 10 mph to 40 mph. Plot the rate of heat loss as a
function of air temperature and of wind velocity, and discuss the
results
Get solution
7–44
An average person generates heat at a rate of 84 W while resting.
Assuming one-quarter of this heat is lost from the head and disregarding
radiation, determine the average surface temperature of the head when
it is not covered and is subjected to winds at 10°C and 35 km/h. The
head can be approximated as a 30-cm-diameter sphere.
Get solution
7–45
Consider the flow of a fluid across a cylinder maintained at a constant
temperature. Now the free-stream velocity of the fluid is doubled.
Determine the change in the drag force on the cylinder and the rate of
heat transfer between the fluid and the cylinder.
Get solution
7–46
A6-mm-diameter electrical transmission line carries an electric current
of 50 Aand has a resistance of 0.002 ohm per meter length. Determine
the surface temperature of the wire during a windy day when the air
temperature is 10°C and the wind is blowing across the transmission line
at 40 km/h.
Get solution
7–47
Reconsider Problem 7–46. Using EES (or other) software, investigate the
effect of the wind velocity on the surface temperature of the wire. Let
the wind velocity vary from 10 km/h to 80 km/h. Plot the surface
temperature as a function of wind velocity, and discuss the results
Get solution
7–48
Aheating system is to be designed to keep the wings of an aircraft
cruising at a velocity of 900 km/h above freezing temperatures during
flight at 12,200-m altitude where the standard atmospheric conditions
are -55.4°C and 18.8 kPa. Approximating the wing as a cylinder of
elliptical cross section whose minor axis is 30 cm and disregarding
radiation, determine the average convection heat transfer coefficient on
the wing surface and the average rate of heat transfer per unit surface
area
Get solution
7–49
A long aluminum wire of diameter 3 mm is extruded at a temperature of
370°C. The wire is subjected to cross air flow at 30°C at a velocity of 6
m/s. Determine the rate of heat transfer from the wire to the air per
meter length when it is first exposed to the air.
Get solution
7–50E
Consider a person who is trying to keep cool on a hot summer day by
turning a fan on and exposing his entire body to air flow. The air
temperature is 85°F and the fan is blowing air at a velocity of 6 ft/s.
If the person is doing light work and generating sensible heat at a rate
of 300 Btu/h, determine the average temperature of the outer surface
(skin or clothing) of
the person. The average human body can be treated as a 1-ftdiameter
cylinder with an exposed surface area of 18 ft2. Disregard any heat
transfer by radiation. What would your answer be if the air velocity
were doubled?
Get solution
7–51
An incandescent lightbulb is an inexpensive but highly inefficient
device that converts electrical energy into light. It converts about 10
percent of the electrical energy it consumes into light while converting
the remaining 90 percent into heat. (A fluorescent lightbulb will give
the same amount of light while consuming only one-fourth of the
electrical energy, and it will last 10 times longer than an incandescent
lightbulb.) The glass bulb of the lamp heats up very quickly as a
result of absorbing all that heat and dissipating it to the surroundings
by convection and radiation. Consider a 10-cm-diameter 100-Wlightbulb
cooled by a fan that blows air at 25°C to the bulb at a velocity of 2
m/s. The surrounding surfaces are also at 25°C, and the emissivity of
the glass is 0.9. Assuming 10 percent of the energy passes through the
glass bulb as light with negligible absorption and the rest of the
energy is absorbed and dissipated by the bulb itself, determine the
equilibrium temperature of the glass bulb.
Get solution
7–52
During a plant visit, it was noticed that a 12-m-long section of a
10-cm-diameter steam pipe is completely exposed to the ambient air. The
temperature measurements indicate that the average temperature of the
outer surface of the steam pipe is 75°C when the ambient temperature is
5°C. There are also light winds in the area at 10 km/h. The emissivity
of the outer surface of the pipe is 0.8, and the average temperature of
the surfaces surrounding the pipe, including the sky, is estimated to be
0°C. Determine the amount of heat lost from the steam during a
10-h-long work day. Steam is supplied by a gas-fired steam generator
that has an efficiency of 80 percent, and the plant pays $0.54/therm of
natural gas (1 therm 105,500 kJ). If the pipe is insulated and 90
percent of the heat loss is saved, determine the amount of money this
facility will save a year as a result of insulating the steam pipes.
Assume the plant operates every day of the year for 10 h. State your
assumptions.
Get solution
7–53
Reconsider Problem 7–52. There seems to be some uncertainty about the
average temperature of the surfaces surrounding the pipe used in
radiation calculations, and you are asked to determine if it makes any
significant difference in overall heat transfer. Repeat the calculations
for average surrounding and surface temperatures of -20°C and 25°C,
respectively, and determine the change in the values obtained
Get solution
7–54E
A 12-ft-long, 1.5-kW electrical resistance wire is made of
0.1-in.-diameter stainless steel (k 8.7 Btu/h · ft · °F). The
resistance wire operates in an environment at 85°F. Determine the
surface temperature of the wire if it is cooled by a fan blowing air at a
velocity of 20 ft/s.
Get solution
7–55
The components of an electronic system are located in a 1.5-m-long
horizontal duct whose cross section is 20 cm 20 cm. The components in
the duct are not allowed to come into direct contact with cooling air,
and thus are cooled by air at 30°C flowing over the duct with a velocity
of 200 m/min. Ifthe surface temperature of the duct is not to exceed
65°C, determine the total power rating of the electronic devices that
can be mounted into the duct.
Get solution
7–56 Repeat Problem 7–55 for a location at 4000-m altitude where the atmospheric pressure is 61.66 kPa
Get solution
7–57
A0.4-W cylindrical electronic component with diameter 0.3 cm and length
1.8 cm and mounted on a circuit board is cooled by air flowing across
it at a velocity of 150 m/min. If the air temperature is 40°C, determine
the surface temperature of the component
Get solution
7–58
Consider a 50-cm-diameter and 95-cm-long hot water tank. The tank is
placed on the roof of a house. The water inside the tank is heated to
80ºC by a flat-plate solar collector during the day. The tank is then
exposed to windy air at 18ºC with an average velocity of 40 km/h during
the night. Estimate the temperature of the tank after a 45-mm period.
Assume the tank surface to be at the same temperature as the water
inside, and the heat transfer coefficient on the top and bottom surfaces
to be the same as that on the side surface
Get solution
7–59
Reconsider Problem 7–58. Using EES (or other) software, plot the
temperature of the tank as a function of the cooling time as the time
varies from 30 mm to 5 h, and discuss the results
Get solution
7–60
A1.8-m-diameter spherical tank of negligible thickness contains iced
water at 0ºC. Air at 25ºC flows over the tank with a velocity of 7 m/s.
Determine the rate of heat transfer to the tank and the rate at which
ice melts. The heat of fusion of water at 0ºC is 333.7 kJ/kg.
Get solution
7-61
A 10-cm-diameter, 30-cm-high cylindrical bottle contains cold water at
3ºC. The bottle is placed in windy air at 27ºC. The water temperature is
measured to be 11ºC after 45 minutes of cooling. Disregarding radiation
effects and heat transfer from the top and bottom surfaces, estimate
the average wind velocity.
Get solution
7–62C
In flow across tube banks, why is the Reynolds number based on the
maximum velocity instead of the uniform approach velocity
Get solution
7–63C
In flow across tube banks, how does the heat transfer coefficient vary
with the row number in the flow direction? How does it vary with in the
transverse direction for a given row number
Get solution
7–64
Combustion air in a manufacturing facility is to be preheated before
entering a furnace by hot water at 90ºC flowing through the tubes of a
tube bank located in a duct. Air enters the duct at 15ºC and 1 atm with a
mean velocity of 3.8 m/s, and flows over the tubes in normal direction.
The outer diameter of the tubes is 2.1 cm, and the tubes are arranged
in-line with longitudinal and transverse pitches of SL = ST = 5 cm.
There are eight rows in the flow direction with eight tubes in each row.
Determine the rate of heat transfer per unit length of the tubes, and
the pressure drop across the tube bank
Get solution
7–65 Repeat Problem 7–64 for staggered arrangement with SL = ST = 5 cm
Get solution
7–66
Air is to be heated by passing it over a bank of 3-m-long tubes inside
which steam is condensing at 100ºC. Air approaches the tube bank in the
normal direction at 20ºC and 1 atm with a mean velocity of 5.2 m/s. The
outer diameter of the tubes is 1.6 cm, and the tubes are arranged
staggered with longitudinal and transverse pitches of SL = ST = 4 cm.
There are 20 rows in the flow direction with 10 tubes in each row.
Determine (a) the rate of heat transfer, (b) and pressure drop across
the tube bank, and (c) the rate of condensation of steam inside the
tubes
Get solution
7–67 Repeat Problem 7–66 for in-line arrangement with SL = ST = 5 cm
Get solution
7–68
Exhaust gases at 1 atm and 300ºC are used to preheat water in an
industrial facility by passing them over a bank of tubes through which
water is flowing at a rate of 6 kg/s. The mean tube wall temperature is
80ºC. Exhaust gases approach the tube bank in normal direction at 4.5
m/s. The outer diameter of the tubes is 2.1 cm, and the tubes are
arranged in-line with longitudinal and transverse pitches of SL = ST = 8
cm. There are 16 rows in the flow direction with eight tubes in each
row. Using the properties of air for exhaust gases, determine (a) the
rate of heat transfer per unit length of tubes, (b) and pressure drop
across the tube bank, and (c) the temperature rise of water flowing
through the tubes per unit length of tubes
Get solution
7–69
Water at 15ºC is to be heated to 65ºC by passing it over a bundle of
4-m-long 1-cm-diameter resistance heater rods maintained at 90ºC. Water
approaches the heater rod bundle in normal direction at a mean velocity
of 0.8 m/s. The rods arc arranged in-line with longitudinal and
transverse pitches of SL = 4 cm and ST = 3 cm. Determine the number of
tube rows NL in the flow direction needed to achieve the indicated
temperature rise.
Get solution
7–70
Air is to be cooled in the evaporator section of a refrigerator by
passing it over a bank of 0.8-cm-outer-diameter and 0.4-m-long tubes
inside which the refrigerant is evaporating at -20ºC. Air approaches the
tube bank in the normal direction at 0ºC and 1 atm with a mean velocity
of 4 m/s. The tubes are arranged in-line with longitudinal and
transverse pitches of SL = ST = 1.5 cm. There are 30 rows in the flow
direction with 15 tubes in each row. Determine (a) the refrigeration
capacity of this system and (b) and pressure drop across the tube bank.
Get solution
7–71
Repeat Problem 7–70 by solving it for staggered arrangement with SL =
ST = 1.5 cm, and compare the performance of the evaporator for the
in-line and staggered arrangements
Get solution
7–72
Atube bank consists of 300 tubes at a distance of 6 cm between the
centerlines of any two adjacent tubes. Air approaches the tube bank in
the normal direction at 40ºC and 1 atm with a mean velocity of 7 m/s.
There are 20 rows in the flow direction with 15 tubes in each row with
an average surface temperature of 140ºC. For an outer tube diameter of 2
cm, determine the average heat transfer coefficient.
Get solution
7–73C
What is thermal insulation? How does a thermal insulator differ in
purpose from an electrical insulator and from a sound insulator
Get solution
7–74C Does insulating cold surfaces save energy? Explain.
Get solution
7–75C What is the R-value of insulation? How is it determined? Will doubling the thickness of flat insulation double its R-value
Get solution
7–76C How does the R-value of an insulation differ from its thermal resistance
Get solution
7–77C
Why is the thermal conductivity of superinsulation orders of magnitude
lower than the thermal conductivities of ordinary insulations
Get solution
7–78C Someone suggests that one function of hair is to insulate the head. Do you agree with this suggestion
Get solution
7–79C Name five different reasons for using insulation in industrial facilities
Get solution
7–80C What is optimum thickness of insulation? How is it determined
Get solution
7–81 What is the thickness of flat R-8 (in SI units) insulation whose thermal conductivity is 0.04 W/m · °C
Get solution
7–82E What is the thickness of flat R-20 (in English units) insulation whose thermal conductivity is 0.02 Btu/h · ft · °F
Get solution
7–83
Hot water at 110°C flows in a cast iron pipe (k 52 W/m · °C) whose
inner radius is 2.0 cm and thickness is 0.3 cm. The pipe is to be
covered with adequate insulation so that the temperature of the outer
surface of the insulation does not exceed 30°C when the ambient
temperature is 22°C. Taking the heat transfer coefficients inside and
outside the pipe to be hi 80 W/m2 · °C and ho 22 W/m2 · °C,
respectively, determine the thickness of fiber glass insulation (k
0.038 W/m · °C) that needs to be installed on the pipe.
Get solution
7–84
Reconsider Problem 7–83. Using EES (or other) software, plot the
thickness of the insulation as a function of the maximum temperature of
the outer surface of insulation in the range of 24ºC to 48ºC. Discuss
the results
Get solution
7–85
Consider a furnace whose average outer surface temperature is measured
to be 90°C when the average surrounding air temperature is 27°C. The
furnace is 6 m long and 3 m in diameter. The plant operates 80 h per
week for 52 weeks per year. You are to insulate the furnace using
fiberglass insulation (kins 0.038 W/m · °C) whose cost is $10/m2 per
cm of thickness for materials, plus $30/m2 for labor regardless of
thickness. The combined heat transfer coefficient on the outer surface
is estimated to be ho 30 W/m2 · °C. The furnace uses natural gas whose
unit cost is $0.50/therm input (1 therm 105,500 kJ), and the
efficiency of the furnace is 78 percent. The management is willing to
authorize the installation of the thickest insulation (in whole cm) that
will pay for itself (materials and labor) in one year. That is, the
total cost of insulation should be roughly equal to the drop in the fuel
cost of the furnace for one year. Determine the thickness of insulation
to be used and the money saved per year. Assume the surface temperature
of the furnace and the heat transfer coefficient are to remain
constant.
Get solution
7–85 Repeat Problem 7–85 for an outer surface temperature of 75°C for the furnace
Get solution
7–87E
Steam at 400°F is flowing through a steel pipe (k 8.7 Btu/h · ft ·
°F) whose inner and outer diameters are 3.5 in. and 4.0 in.,
respectively, in an environment at 60°F. The pipe is insulated with
1-in.-thick fiberglass insulation (k 0.020 Btu/h · ft · °F), and the
heat transfer coefficients on the inside and the outside of the pipe are
30 Btu/h · ft2 · °F and 5 Btu/h · ft2 · °F, respectively. It is
proposed to add another 1-in.-thick layer of fiberglass insulation on
top of the existing one to reduce the heat losses further and to save
energy and money. The total cost of new insulation is $7 per ft length
of the pipe, and the net fuel cost of energy in the steam is $0.01 per
1000 Btu (therefore, each 1000 Btu reduction in the heat loss will save
the plant $0.01). The policy of the plant is to implement energy
conservation measures that pay for themselves within two years. Assuming
continuous operation (8760 h/year), determine if the proposed
additional insulation is justified
Get solution
7–88
The plumbing system of a plant involves a section of a plastic pipe (k
0.16 W/m · °C) of inner diameter 6 cm and outer diameter 6.6 cm exposed
to the ambient air. You are to insulate the pipe with adequate
weather-jacketed fiberglass insulation (k 0.035 W/m · °C) to prevent
freezing of water in the pipe. The plant is closed for the weekends for a
period of 60 h, and the water in the pipe remains still during that
period. The ambient temperature in the area gets as low as -10°C in
winter, and the high winds can cause heat transfer coefficients as high
as 30 W/m2 · °C. Also, the water temperature in the pipe can be as cold
as 15°C, and water starts freezing when its temperature drops to 0°C.
Disregarding the convection resistance inside the pipe, determine the
thickness of insulation that will protect the water from freezing under
worst conditions
Get solution
7–89 Repeat Problem 7–88 assuming 20 percent of the water in the pipe is allowed to freeze without jeopardizing safety.
Get solution
7–90
Consider a house that is maintained at 22°C at all times. The walls of
the house have R-3.38 insulation in SI units (i.e., an L/k value or a
thermal resistance of 3.38 m2 · °C/W). During a cold winter night, the
outside air temperature is 4°C and wind at 50 km/h is blowing parallel
to a 3-m-high and 8-m-long wall of the house. If the heat transfer
coefficient on the interior surface of the wall is 8 W/m2 · °C,
determine the rate of heat loss from that wall of the house. Draw the
thermal resistance network and disregard radiation heat transfer.
Get solution
7–91
An automotive engine can be approximated as a 0.4-mhigh, 0.60-m-wide,
and 0.7-m-long rectangular block. The bottom surface of the block is at a
temperature of 75°C and has an emissivity of 0.92. The ambient air is
at 5°C, and the road surface is at 10°C. Determine the rate of heat
transfer from the bottom surface of the engine block by convection and
radiation as the car travels at a velocity of 60 km/h. Assume the flow
to be turbulent over the entire surface because of the constant
agitation of the engine block. How will the heat transfer be affected
when a 2-mm-thick gunk (k 3 W/m · °C) has formed at the bottom surface
as a result of the dirt and oil collected at that surface over time?
Assume the metal temperature under the gunk still to be 75°C.
Get solution
7–92E
The passenger compartment of a minivan traveling at 60 mph can be
modeled as a 3.2-ft-high, 6-ft-wide, and 11-ftlong rectangular box whose
walls have an insulating value of R-3 (i.e., a wall
thickness–to–thermal conductivity ratio of 3h· ft2 · °F/Btu). The
interior of a minivan is maintained at an average temperature of 70°F
during a trip at night while the outside air temperature is 90°F. The
average heat transfer coefficient on the interior surfaces of the van is
1.2 Btu/h · ft2 · °F. The air flow over the exterior surfaces can be
assumed to be turbulent because of the intense vibrations involved, and
the heat transfer coefficient on the front and back surfaces can be
taken to be equal to that on the top surface. Disregarding any heat gain
or loss by radiation, determine the rate of heat transfer from the
ambient air to the van.
Get solution
7–93
Consider a house that is maintained at a constant temperature of 22°C.
One of the walls of the house has three single-pane glass windows that
are 1.5 m high and 1.2 m long. The glass (k 0.78 W/m · °C) is 0.5 cm
thick, and the heat transfer coefficient on the inner surface of the
glass is 8W/m2 · C. Now winds at 60 km/h start to blow parallel to the
surface of this wall. If the air temperature outside is -2°C, determine
the rate of heat loss through the windows of this wall. Assume radiation
heat transfer to be negligible
Get solution
7–94
Consider a person who is trying to keep cool on a hot summer day by
turning a fan on and exposing his body to air flow. The air temperature
is 32°C, and the fan is blowing air at a velocity of 5 m/s. The
surrounding surfaces are at 40°C, and the emissivity of the person can
be taken to be 0.9. If the person is doing light work and generating
sensible heat at a rate of 90 W, determine the average temperature of
the outer surface (skin or clothing) of the person. The average human
body can be treated as a 30-cm-diameter cylinder with an exposed surface
area of 1.7 m2.
Get solution
7–95
Four power transistors, each dissipating 12 W, are mounted on a thin
vertical aluminum plate (k 237 W/m · °C) 22 cm 22 cm in size. The
heat generated by the transistors is to be dissipated by both surfaces
of the plate to the surrounding air at 20°C, which is blown over the
plate by a fan at a velocity of 250 m/min. The entire plate can be
assumed to be nearly isothermal, and the exposed surface area of the
transistor can be taken to be equal to its base area. Determine the
temperature of the aluminum plate
Get solution
7–96
A3-m-internal-diameter spherical tank made of 1-cmthick stainless steel
(k 15 W/m · °C) is used to store iced water at 0°C. The tank is
located outdoors at 30°C and is subjected to winds at 25 km/h. Assuming
the entire steel tank to be at 0°C and thus its thermal resistance to be
negligible, determine (a) the rate of heat transfer to the iced water
in the tank and (b) the amount of ice at 0°C that melts during a 24-h
period. The heat of fusion of water at atmospheric pressure is hif
333.7 kJ/kg. Disregard any heat transfer by radiation.
Get solution
7–97
Repeat Problem 7–96, assuming the inner surface of the tank to be at
0°C but by taking the thermal resistance of the tank and heat transfer
by radiation into consideration. Assume the average surrounding surface
temperature for radiation exchange to be 15°C and the outer surface of
the tank to have an emissivity of 0.9.
Get solution
7–98E
Atransistor with a height of 0.25 in. and a diameter of 0.22 in. is
mounted on a circuit board. The transistor is cooled by air flowing over
it at a velocity of 500 ft/min. If the air temperature is 120°F and the
transistor case temperature is not to exceed 180°F, determine the
amount of power this transistor can dissipate safely.
Get solution
7–99
The roof of a house consists of a 15-cm-thick concrete slab (k 2 W/m ·
°C) 15 m wide and 20 m long. The convection heat transfer coefficient
on the inner surface of the roof is 5 W/m2 · °C. On a clear winter
night, the ambient air is reported to be at 10°C, while the night sky
temperature is 100 K. The house and the interior surfaces of the wall
are maintained at a constant temperature of 20°C. The emissivity of both
surfaces of the concrete roof is 0.9. Considering both radiation and
convection heat transfer, determine the rate of heat transfer through
the roof when wind at 60 km/h is blowing over the roo
f. If the house
is heated by a furnace burning natural gas with an efficiency of 85
percent, and the price of natural gas is $0.60/therm (1 therm 105,500
kJ of energy content), determine the money lost through the roof that
night during a 14-h period.
Get solution
7–100
Steam at 250°C flows in a stainless steel pipe (k 15 W/m · °C) whose
inner and outer diameters are 4 cm and 4.6 cm, respectively. The pipe is
covered with 3.5-cm-thick glass wool insulation (k 0.038 W/m · °C)
whose outer surface has an emissivity of 0.3. Heat is lost to the
surrounding air and surfaces at 3°C by convection and radiation. Taking
the heat transfer coefficient inside the pipe to be 80 W/m2 · °C,
determine the rate of heat loss from the steam per unit length of the
pipe when air is flowing across the pipe at 4 m/s.
Get solution
7–101
The boiling temperature of nitrogen at atmospheric pressure at sea
level (1 atm pressure) is -196°C. Therefore, nitrogen is commonly used
in low-temperature scientific studies, since the temperature of liquid
nitrogen in a tank open to the atmosphere will remain constant at 196°C
until it is depleted. Any heat transfer to the tank will result in the
evaporation of some liquid nitrogen, which has a heat of vaporization of
198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 4-m-diameter
spherical tank that is initially filled with liquid nitrogen at 1 atm
and -196°C. The tank is exposed to 20°C ambient air and 40 km/h winds.
The temperature of the thin-shelled spherical tank is observed to be
almost the same as the temperature of the nitrogen inside. Disregarding
any radiation heat exchange, determine the rate of evaporation of the
liquid nitrogen in the tank as a result of heat transfer from the
ambient air if the tank is (a) not insulated, (b) insulated with
5-cm-thick fiberglass insulation (k 0.035 W/m · °C), and (c) insulated
with 2-cm-thick superinsulation that has an effective thermal
conductivity of 0.00005 W/m · °C.
Get solution
7–102
Repeat Problem 7–101 for liquid oxygen, which has a boiling temperature
of -183°C, a heat of vaporization of 213 kJ/kg, and a density of 1140
kg/m3 at 1 atm pressure
Get solution
7–103
A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80
closely spaced logic chips on one side, each dissipating 0.06 W. The
board is impregnated with copper fillings and has an effective thermal
conductivity of 16 W/m ·°C. All the heat generated in the chips is
conducted across the circuit board and is dissipated from the back side
of the board to the ambient air at 30°C, which is forced to flow over
the surface by a fan at a free-stream velocity of 400 m/min. Determine
the temperatures on the two sides of the circuit board.
Get solution
7–104E
It is well known that cold air feels much colder in windy weather than
what the thermometer reading indicates because of the “chilling effect”
of the wind. This effect is due to the increase in the convection heat
transfer coefficient with increasing air velocities. The equivalent
windchill temperature in °F is given by (1993 ASHRAE Handbook of
Fundamentals, Atlanta, GA, p. 8.15)
where V is the wind velocity in mph and Tambient is the ambient air
temperature in °F in calm air, which is taken to be air with light winds
at speeds up to 4 mph. The constant 91.4°F in the above equation is the
mean skin temperature of a resting person in a comfortable environment.
Windy air at a temperature Tambient and velocity will feel as cold as
calm air at a temperature Tequiv. The equation above is valid for winds
up to 43 mph. Winds at higher velocities produce little additional
chilling effect. Determine the equivalent wind chill temperature of an
environment at 10°F at wind speeds of 10, 20, 30, and 40 mph. Exposed
flesh can freeze within one minute at a temperature below 25°F in calm
weather. Does a person need to be concerned about this possibility in
any of the cases above?
Get solution
7–l05E
Reconsider Problem 7–104E. Using EES (or other) software, plot the
equivalent wind chill temperatures in ºF as a function of wind velocity
in the range of 4 mph to 100 mph for ambient temperatures of 20ºF, 40ºF
and 60ºF. Discuss the results.
Get solution